Why do colorful cloud bands encircle Jupiter? Jupiter's top atmospheric layer is divided into light zones and dark belts that go all the way around the giant planet. It is high horizontal winds -- in excess of 300 kilometers per hour -- that cause the zones to spread out planet-wide. What causes these strong winds remains a topic of research. Replenished by upwelling gas, zonal bands are thought to include relatively opaque clouds of ammonia and water that block light from lower and darker atmospheric levels. One light-colored zone is shown in great detail in the featured vista taken by the robotic Juno spacecraft in 2017. Jupiter's atmosphere is mostly clear and colorless hydrogen and helium, gases that are not thought to contribute to the gold and brown colors. What compounds create these colors is another active topic of research -- but is hypothesized to involve small amounts of sunlight-altered sulfur and carbon. Many discoveries have been made from Juno's data, including that water composes an unexpectedly high 0.25 percent of upper-level cloud molecules near Jupiter's equator, a finding important not only for understanding Jovian currents but for the history of water in the entire Solar System.

Read More

Observed with the NASA/ESA Hubble Space Telescope, the faint galaxy featured in this image is known as UGC 12588. Unlike many spiral galaxies, UGC 12588 displays neither a bar of stars across its center nor the classic prominent spiral arm pattern. Instead, to a viewer, its circular, white and mostly unstructured center makes this galaxy more reminiscent of a cinnamon bun than a megastructure of stars and gas in space.

Lying in the constellation of Andromeda in the Northern Hemisphere, this galaxy is classified as a spiral galaxy. Unlike the classic image of a spiral galaxy, however, the huge arms of stars and gas in UGC 12588 are very faint, undistinguished, and tightly wound around its center. The clearest view of the spiral arms comes from the bluer stars sprinkled around the edges of the galaxy that highlight the regions where new star formation is most likely taking place.

Text credit: European Space Agency

Read More

Where did all the stars go? What used to be considered a hole in the sky is now known to astronomers as a dark molecular cloud. Here, a high concentration of dust and molecular gas absorb practically all the visible light emitted from background stars. The eerily dark surroundings help make the interiors of molecular clouds some of the coldest and most isolated places in the universe. One of the most notable of these dark absorption nebulae is a cloud toward the constellation Ophiuchus known as Barnard 68, pictured here. That no stars are visible in the center indicates that Barnard 68 is relatively nearby, with measurements placing it about 500 light-years away and half a light-year across. It is not known exactly how molecular clouds like Barnard 68 form, but it is known that these clouds are themselves likely places for new stars to form. In fact, Barnard 68 itself has been found likely to collapse and form a new star system. It is possible to look right through the cloud in infrared light.

Read More

Floods of unimaginable magnitude once washed through Gale Crater on Mars' equator around 4 billion years ago—a finding that hints at the possibility that life may have existed there, according to data collected by NASA's Curiosity rover and analyzed in joint project by scientists from Jackson State University, Cornell University, the Jet Propulsion Laboratory and the University of Hawaii.

The research, "Deposits from Giant Floods in Gale Crater and Their Implications for the Climate of Early Mars," was published Nov. 5 in Scientific Reports.

Read More

I always wanted to get to Arecibo, the magnificent 305-meter telescope that has for so long been a locus for radio astronomy research, but I was never able to make it to Puerto Rico. Now I’ve run out of time. The National Science Foundation doesn’t make these decisions lightly but multiple engineering companies have delivered assessments that point to catastrophic failure of the telescope structure as a real possibility. Too dangerous to repair, and faced with stability issues even if it could be repaired, the Arecibo Observatory will be decommissioned.

Read More

Most star clusters are singularly impressive. Open clusters NGC 869 and NGC 884, however, could be considered doubly impressive. Also known as "h and chi Persei", this unusual double cluster, shown above, is bright enough to be seen from a dark location without even binoculars. Although their discovery surely predates recorded history, the Greek astronomer Hipparchus notably cataloged the double cluster. The clusters are over 7,000 light years distant toward the constellation of Perseus, but are separated by only hundreds of light years. In addition to being physically close together, the clusters' ages based on their individual stars are similar - evidence that both clusters were likely a product of the same star-forming region.

Read More

What's creating these long glowing streaks in the sky? No one is sure. Known as Strong Thermal Emission Velocity Enhancements (STEVEs), these luminous light-purple sky ribbons may resemble regular auroras, but recent research reveals significant differences. A STEVE's great length and unusual colors, when measured precisely, indicate that it may be related to a subauroral ion drift (SAID), a supersonic river of hot atmospheric ions thought previously to be invisible. Some STEVEs are now also thought to be accompanied by green picket fence structures, a series of sky slats that can appear outside of the main auroral oval that does not involve much glowing nitrogen. The featured wide-angle composite image shows a STEVE in a dark sky above Childs Lake, Manitoba, Canada in 2017, crossing in front of the central band of our Milky Way Galaxy.

Read More

A group of astronomers from The University of Texas at Austin has found that a telescope idea shelved by NASA a decade ago can solve a problem that no other telescope can: It would be able to study the first stars in the universe. The team, led by NASA Hubble Fellow Anna Schauer, will publish their results in an upcoming issue of The Astrophysical Journal.

"Throughout the history of astronomy, telescopes have become more powerful, allowing us to probe sources from successively earlier cosmic times—ever closer to the Big Bang," said professor and team member Volker Bromm, a theorist who has studied the first stars for decades. "The upcoming James Webb Space Telescope [JWST] will reach the time when galaxies first formed.

"But theory predicts that there was an even earlier time, when galaxies did not yet exist, but where individual stars first formed—the elusive Population III stars. This moment of 'very first light' is beyond the capabilities even of the powerful JWST, and instead needs an 'ultimate' telescope."

Read More

Astronomers often suggest that’s unlikely. There are so many exoplanets, possibly multiple trillions just in our galaxy, and there are 2 million to 8 million (depending on which biologist you ask) species on Earth inhabiting even the most hostile places — from the cooling tanks of nuclear reactors to super-salty lakes to the crushing depths of the way-down ocean. Given the size of the universe and the sprawl of potentially habitable real estate, sheer statistics mean life has to exist. At least, that’s the traditional line of thinking. “Ultimately, the argument they are putting forth is that there are, for the sake of argument, a trillion places that life could get going on, and that’s a big number,” Webb says.

Read More
Space

A community for space freaks

Created on Jun 12, 2020
By @gurlic